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WSS, HUN, 310024; 4. F HABEBEGE, #H%BE, #H, 351100)

i E QMESMEEE (EVs) BE7REZ RS MM 2R FH2 WA e M B Z AR R . A ST
T—F % T DNA BT EVs R0 2 8 H G 0T R0, 38 ik 580k i Bl & 5 8 TR 1% ( SP-ICP-
MS) X EVs BPR§ i E T, SCOUIF4 U (HCC) RS W, A 7 it 7 il iR 3 EpCAM ( | Kz
M 4T ) . GPC3 (MR BITEE B R 3) Al CD63 (434b#%E 63) 3 Ff iR 1Y & B AR -DNA #
W, R 2 bR R 3 A 1 7 6 BVs AT RE SRR, R Ak R VR RPN, AR URRAE
DNA J¥ 9] 3 5 94 >k 4 ¥R 5t 22 38, 52 B0 SP-ICP-MS {3 =2 il A K W . 3% 3 g 5 25 32 F+ 7 P88 EVs
WO AR, A RGE IR THESE T ik RS & B Il v 36 5 40 45 k8, R PR 0] 3K 950 particles-pL™.
T 50 il RRE AR 45 5 @ 7R, EpCAM/GPC3/CD63 = FH¥ER 51K EVs W 7] I T X 4> HCC 5T
WL, WU N 82.4%, FRFPEN 91.3%, HLFH# MU E PG 2 (RN . A 55 T 42 1 1Y SP-
ICP-MS IfiLi5 EVs 43 Hr 5 i HCC R W2 R4t T8 B %, [RIAT i3 T SP-ICP-MS AR fEMG 1 B2 2
PR — 2 R .
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Abstract Extracellular vesicles (EVs), carrying multiple disease-related proteins, have emerged as
promising markers to enhance diagnostic performance in early hepatocellular carcinoma (HCC)
detection. In this study, we propose a DNA logic gate-based strategy for multiplexed protein
biomarker-based detection on the surface of extracellular vesicles (EVs), enabling highly sensitive
quantification of HCC-derived EVs using single-particle inductively coupled plasma mass
spectrometry (SP-ICP-MS) for precise early diagnosis of HCC. The method employs aptamer-based
DNA logic circuits capable of recognizing EpCAM (Epithelial Cell Adhesion Molecule), GPC3
(Glypican-3), and CD63 (Cluster of Differentiation 63) proteins. Upon co-localization of these
markers on EVs, the system triggers a rolling circle amplification (RCA) reaction to generate
characteristic DNA sequences, which then hybridize with gold nanoparticle probes, thereby enabling
signal amplification and subsequent SP-ICP-MS detection. This approach significantly enhances the
specificity of tumor EVs recognition, and effectively overcomes the limitations of conventional
methods, such as low sensitivity, and interference from complex serum matrices. The detection limit
for EVs reaches down to 950 particles'uL™'. The EVs subsets with positive expressions of EpCAM,
GPC3 and CD63 were used to distinguish patients with hepatocellular carcinoma from those with
liver cirrhosis, the diagnostic sensitivity and specificity of triple-positive EVs were 82.4% and
91.3%, respectively, outperforming conventional serum alpha-fetoprotein (AFP) testing. In
conclusion, this study proposes a novel serum EVs analysis strategy, offering a new approach for the
early diagnosis of HCC and promoting the further application of SP-ICP-MS technology in precision
medicine.

Keywords hepatocellular carcinoma, extracellular vesicles, DNA logic gates, SP-ICP-MS,

early diagnosis.

AR, B Tl Ak R AR, R85 & Fi s e W R W R, 38 15 S8 1 RE | AN S 0
A 5 15 B PR ZE L, S B 0 T JRE S 8 2 9 IXUS: U2, T 41 it 98 (hepatocellular carcinoma, HCC) J2:
SRRV P A UL IR R M I 2R R, B R 3 | i RURN TS 25 A RE L R IR AR 2T T B
AWk &, Bl T HCC R £ Je W] BAE IR, #5d 70% i B 7ERS i 4 T i, ik 7 F AR
SRTIAYT I R B oL PR, R B AUEE | R R SR L TR R B SRS MU A A P R
Yt HCC 3 SV AE A7 R I R IR, 002 Y i e I 52 Sk i A O Bl 2 ) L 2 — . H R, I3
i 2 1 ( Alpha-fetoprotein, AFP) 4T3 & e Y HCC MLiE ARG W, SR M0, KEHFFEIESL, AFP 1E y #—
A= Wb 75 0 P R R R S T Y A A B R BB Y 24 30%—40% 19 R3] HCC 3% AFP K- 6T
fans RIS, 18 L F 9 . T BRI 98 DA B A Ak 5 R T £8 3 R T HE B0 AP 52 58 T v, 388 Jn 1 (B PR
R, T R A RGE. ik, BF9T 225 A AFP-L3(AFP 52 Fi{K) . PIVKA-II(ZE 5 S 1 4E4: &
K = s A5 -1D S50 H8 b, T 2 A8 AR IBE A K T L3R TH2 W P E 100, RLAS I B0 5% W 7 30 40 48 v
R LT AFP SRS TN (12 WAL R, (EATS Tk iR R AL TS 5t T bRl 238238 U3 ], H A
T WS8R AR AL R R A 15207 58, BRI T HLHE )it .

Bl 2 TS AR 4R 1, PR T G R AR TR R AR L s w] WD s B A Wb i . v, 4
Jif 43 761 (extracellular vesicles, EVs) P &7 BERRUE 1 o A= 0ok IR e S 1 AN 4y F L 2K BE 77, A HCC K
W2 W7 40 S5 A L AT SR PR AR P 2R AR L EVs S 4N M 3 3 43 I 1 AHOK G I e, T2 AR AE T L IR
W RS R, RENSHE Y 2R A E B T (IR E AR R . 538 5), I S R 4 A 1 A B
SR RS A AL G i 3 1 AR AR, EVs R RS DU OR300 (1) Fo0e Pk FLsl i 02 A
SERE AT A SR R S SR THT 53 52 AR VR il %) B A, DR A DU ) R A5 5 RS e M R AT R s (2)
SRR BVs B PR UR TR 4120 di i, B B AP 4120 5 900 1 1k, A Bl T X 43 Jil g ok TR
EVs 5 HA T 5005 (3) REUMELF: 2055 IESE, EVs 2 11 8 5 K5 e e B PR B 4%
YIS, B R RIS W SEm s A I E. KA EVs 7EFLIRIENY, Bt | BRARIEIS 5 2
e TP 2 W ) AR B0 25 BIE, EVs 7E HCC ST o i 5% AL T T i — R 50 ) A & 2, B Al 24K
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5 R AL T H— EVs bRl 0 F (U1 miRNA | IncRNA 55— ), = 245359 P R0 0 5w
TS W R AR A SZ B LR, BVs 143 B85 alifh e i BB, A% 20 1 00 ol g o SRR AR A
ISCRA  BRERR 2%, AFI TG RHE 5 1L4h, 47T EVs BRI TFBEEH AR B e Z R 1, i
A LA B AR AT AE B UR KO 0 BT, (HXT 0K S EVs 2R A, HZ 9O my =G5 T4, Tt
ARSI NUTH PR 5T b e SV T . ELISA VR 28 S e A Jy ik, L4 v o R (R 0 o 5 e, (ELARSE
—bREW, MELASEHT EVs 1958 B0, How A6 )t 32 BR B4R 520 S50R AT e L, 38 D175 224
R AE IR AT FSC B 2 AR B YRS MR B A H R &, OF & R B Sl L (8 AL A PR T %1k
T ARSI i

VEAF R, BB A 55 55 TR B3 (inductively coupled plasma mass spectrometry, ICP-MS) K H H A7 8
15 1 AR | A3 B AR A P T AL RE ) S LB, AEAE W oy F o Br AR B Tz . A 4 T
FARCRIE KR, BRI SEBINT B U, AR, B A ), 40 TR PO SR AR AR W A R S %
GE 9 A FE ARAH L, SP-ICP-MS i £ fiff Fi 25 V5, ] Ind 28 ikt i S T3, 49 Al FH TR 2 AR e AR R
T

BT, AR IEEL EpCAM( L K2 4 B 2 FfE 5+ ) . GPC3(Bi R £ It 28 2 1 B M 3) A1 CD63 (43
fBi% 63) 11 3 B EVs 1 & F1E B HCC 2KIE EVs BREFPERR S 2, My T —Fh L DNA #2517 R
Bt B ZhR BRI 6, 4546 SP-ICP-MS H T R U5 EVs (1975 R SO, TR A 1 s,
7E 3 R 3L 2 i 258 T, DNA [l B9 30, 2 1M 5 | VR 31791 (Rolling Circle Amplification, RCA)
JNE, A 8 DUES ) DNA FE91. 438 7= Wy vl ik — 20 580 A BANT 51 1) 553 DNA-AuNPs & 4 2%
E R, T AN K 4 BEAE A, DT SE XS EVs 8 SP-ICP-MS #6145 F i =X 40 it R F1 ELISA 5454
EVs Filll Bz, A5 s HL & TR 00 2 e 1 590 s THiae 1, HnT AR 28 W4l Ak i) it 3 AR A rh 52
Z bR EVs WAF 1RSI 4725 I RAE AR 5% 36 B, IR W T A3 2 X A RN L PR AL R B
HCC ##1miE T EVs Z6384#F, H EpCAM/GPC3/CD63 = [l EVs 7E X 4 HCC 5 B4 7995 77 1 14
FIR TAE S MTE AFP. X W = RE . nT 5% L HCC RTS8t T R S8, Rl
o7 JHTHIT 5.
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Fig.1 Principle of the DNA loop-mediated RCA signal amplification strategy for SP-ICP-MS analysis of EVs

1 i%\%ﬁﬁj\(Experimental section)

1.1 A% 50
A TAE B H B9 FLAR 2¢ Y64 A Molecular devices, SpectraMax iD3, i & I K % & 4 488 nm, & 4%
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£ A 520 nm; i 28 40 i AR 52 56 6 F Beckman Coulter, CytoFLEX i 25 #8 3 2 .0 Il >4 Optima XE-90
Ultracentrifuge. B J50k7 F JEHE A %6 5 IR BT 1% 754 PerkinElmer NexION 2000. DNA J¥ 4134 by I ¥
A T4 W45 R /5 7] (Sangon Biotech, Shanghai, China) 52 il & i, F 4 &5 B0 A (435 2 4t (HPLC) 4li ik,
SRR F 5 KA UL 3 1. Phi20 DNA A i (Phi29) . it E A% B BR 1R &9 (ANTPs) [R) REI F 4=
TAEWHE AN A BEE: -RNA W [ IR A R A BRA A NI 400 (HepG2) . A IE & 40
ML (HL7702) 1 [ A FERRE Be i 40 0 %8, &4 10% JIG 28 1035 (FBS) AR (0.5 mg-mL ™ ¥ 75 & /4%
# %) K DMEM 5¢ 5 37 355 3%, CO, &t 5%, I 37 °C. FR4NMI% B A 80% 72 4+ I b A5 A& QR A
IS FRAS IR 11K 2 B v L B B
F1 ATIEPEHEHEZTTRITY

Table 1 Oligonucleotide sequences employed in this work

BT TR 5271
Oligonucleotide Sequence (5°-3)
Trip-HP-A CACAAGCAACCTTAACTTGTGACGTGTTTTTTTTTTTTTTT TTCCACTTCCAT
Buy CTCACCTACCACTTTTTTTTTTTTTTTTACGTCACCCTCGTTCCAGTATT
Bys CTCACCTACCACTTTTTTTTTTTTTTTTACGTCACCCTCGTTCCAGGATT
Bsyg CTCACCTACCACTTTTTTTTTTTTTTTCACGTCACCCTCGTTCCAGGTTT
C TGCTTACTGTCATTTTTTTTTTTTTTTACCTGGCATCCCATGTGTCTT
Tarn ATGGAAGTGGAATTTTTTTTTTTTGTGGTAGGTGAG
Trsc ATGGAAGTGGAATTTTTTTTTTTTTGACAGTAAGCA
Thec GTGGTAGGTGAGTTTTTTTTTTTTTGACAGTAAGCA
Tassic ATGGAAGTGGAATTTGTGGTAGGTGAGTTTTGACAGTAAGC
Blocker;s CATCCCATGTGTC-BHQ
Blockerg TCGCATCCCATGTGTC-BHQ
FAM-Report FAM-GACACACATGGGATGCGAGGGTTAAGGTTG
FAM-CD63 FAM-TTTTCACCCCACCTCGCTCCCGTGACACTAATGCTA
FAM-EpCAM CACTACAGAGGTTGCGTCTGTCCCACGTTGTCATGGGGGGTTGGCCTGTTTT-FAM
FAM-GPC3 FAM-TTTTAACGCTGACCTTAGCTGCATGGCTTTACATGTTCCA
Teinlex (D63 CACAAGCAACCTTAACTTGTGACGTGTTTTTTTTTTTTTTTTTTTTCACCCCACCTCGCTCCCGTGACAC
rpiex- TAATGCTA
sl GPC3 TAACGCTGACCTTAGCTGCATGGCTTTACATGTTCCATTTTTTTTTTTTTTTTTTTTTACGTCACCCTCG
ple TTCCAGGATT
TriiexEncar  CACTACAGAGGTTGCGTCTGTCCCACGTTGTCATGGGGGGTTGGCCTGTTTTTTTTTTTTTITTTTACCT
plex-tp GGCATCCCATGTGTCTT

GACACACATGGGATGCGAGGGTTAAGGTTGTTCTCACACTCACCTACCAGATTCGCTTGGTAGGTGA

RCA Template GAGACGCTCTGGCATATACAAGACAGTA

RCA Blocker TCGCATCCCATGTGTCTTTT-Inverted dT
Label DNA SH-TTTTTTTTTTTTT GACACACATGGGATG
1.2 L85k

1.2.1 DNA 245 [l #% )44

¥ DNA H 1x PBS Pt & UK E N 1 pmol- L™ A EEH, 78 96 fLAR H K DNA [ 3% 8 TAEF 513 LT
JIGE YR A 2 B 2 s 0L MR BE A 50 nmol-L™' HP-A 4% . 50 nmol-L™" B %%, 50 nmol-L™' C %, 20 nmol-L"'
Target &%, VS SR FI A 100 pL, 2% w4514 4 1x PBS, 10 mmol-L™' MgCl,, Z{RI%F 10 min /&, [0 K
A 10 uL 400 nmol- L™ 2 1555 R(FAM-Report), >R JH 488 nm [ & Il K, 76 & F1 %1 520 nm A
SEDSOCSRIE . B ST b, DR AR R N A S 3B EAT 1K, A TEHEL A 1 h. ZE DNA [B]# R
A L B 2P, AR S 50 175 DL AN [ 1) Target £ AR .
1.2.2 DNA-AuNP #5441 %

H 50 uL i FE i Label DNA(100 pmol-L™") | 10 uL TCEP(10 mmol-L ™)l 1 pL NaAc-HAc 2% #f
& (500 mmol-L™', pH 5.2) IR & IEMEE 1 h LIk J5 #4168 J5 )5 19 Label DNA 5 5 mL AuNPs 1A 7K 1
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& TEFEME 6 h. 7 6 IRIGE P Z A 1M NaCl, B 27 TP NaCl ¥ i %) 200 mmol-L™", 1 B4+
A5 FHB AN — 5, BRI 52 SR AR SE A 6 h 13000 rmin”' R #5010 min, FE FIHW, (1 1 mL
Al KB UTTE R, B TR 10 1K, &5 DNA-AuNPs {54775 B 2l K rh DL — 5 .
1.2.3 DNA [H§4r 5 RCA ¥4

%54 50 nmol-L™' DNA i #5 [nl i T /B85 1Y 96 LA H A 20 uL Target ££/EVs £ i, S A FH 4%
2100 uL. ZZ M5 F R 1x PBS(4% 10 mmol-L™' MgCl,, 1 mg-L™' BSA 1 0.1 mg-L™' i#H} t-RNA), ¥R &
YI7E = IR T E 30 min Ji7, JITA 10 uL 3~ 400 nmol-L™' AU IE RCA ¥ 845 bu ik, I 4k 2L W 1 h.
B 15 pL S, MR 1 L 10x Reaction Buffer ¥ ¥ . 2 pL 10 mmol-L™ dNTP IR & ¥ LA & 1 puL
Phi29 DNA B4 (20 U), IF7E 35 °C 4544 F i 1 h LL5ER RCA 1.
1.2.4 4ffudEFRE EVs $2HL

21 Jif 8% 5% 2155 (4200 r-min !, 20 min) A1 3% (9400 r-min ™, 20 min) 8.0 25 Bk 40 S 08 A5, K
b E W G B 04 (30000 r-min !, 2 h) YLEE EVs, ] PBS 5 PR B O BRI L R ST
PR . B2 100 puL PBS Hikk EVs, -80 C 41 B AR A7, %o S 2 VRl FH9K I 43 DAL 53 B EVs K
JNFIVEURE YL, 4405 ) EVs HREZE M 1.5 x 107 particle-uL .
1.2.5 MR RIE EVs RIHHE M

# 30 ug EVs S5FLIERE MR (4 um) 76 2 IR E 15 min J5 1 PBS 6 B 462205 & 30 min, B 5 in A
EF AW (1 mol-L™ H & R Al 2% BSA) £ 11 L . 3Bk 28 9 YR S0 375 156 (8000 r-min”', 3 min, PBS & 2%
BSA)JGHE T 40 uL & 0.5% BSA i PBS 1. B 4 pL 2k 5 FAM #7108 B4 (200 nmol-L™") 75 25 T iiF
H 30 min, 2454 2 IR VeV AT 500 L PBS 1, 5o i 2 4 M ARG I 28O (5 5
1.2.6 HF40fifLss EVs (1) SP-ICP-MS 434

RCA P 3 45 0 5, B 1 puL 2% K 5 10 uL DNA-AuNPs( 100 pmol-L ™) JE &, F- I A 1 pL 10x
PBS ZZ i, 725 1% W E 30 min. ZJ5, LA 10 pL 40 mmol-L™' MgCl, ¥4k, M Hi 45 1] PBS ¥HiE &
YIwe e 20 £, e T B 5 pL AR 4k HE— #8200 7% )5 7 B T SP-ICP-MS #EFES . FE 5 E A
HERCE N 10 uL-min !, #MFEROMEB ALK, Fi#E 15 uL-min™', 2425 & 1.2 L-min!, 3 B A} [E] 50 ps, fk
W55 RERE R 40 s .
1.2.7 Git#nhr

>k H] Orign 9.0 Fl1 Excel X§ SP-ICP-MS Ml i £ 4fs i 47 4L 2, LI AuNPs 7E SP-ICP-MS H i bk i {5 5
R B, K 5 % BE W55 0 A RS S, AR T2 B 0 W0 B 0 R 5 {5 5. X AuNPs BI{E Y11
AT 3 WARiE2E (30) BYIEASRE: (D IR EAREMFIE S EAbRE 2, R KT 30 AP
B R . (2) FH RIRE R 5 2 B8 TSR Ak 5 A B 4, 1 30 B8 2505 T 30 5T 3MEZ /N, #4
I BE R A 5 S R K. (3) Hh TR BRI AR AL & T T8 o5, r LUK — iS5 5 1
WA R 1K, H 1] Excel 75 g BR #4740 4t 11, SR ] GraphPad Prism 9.0 A% i RAE A B4 #6174k
L, BT 07 2250 BT (ANOVA test) Xf A [a] (8 35 LG AR A EVs Wk BE 3047 22 57 L3R SR T ROC it & fii i
SRR bR (IS AFP YR EE | EVs AR EE ) X HCC 12 W i U FiRe Sk

2 5 54718 (Results and discussion)

2.1 =R DNA #2458 [0l B 1 i

DNA 12 4[] B 5 <48 31 T A4 151+ BE, H: 3 45 T AR A0 7 [] A6 R ) 4 5 AR I, 18 e 405 A
FHUIK ) A 53 85 04 TAE 5 50 B8 41 2%E, DR e — S R 5 A8 38, 11770 2J) DNA [] (6 fry 5% 8 460 )2 1y
FERE S, T HEATRE S U0 E, & SE T B ST DNA VB R B0l 50 45 44 2 — N FRAH 19 DNA [0l B8 35 171K
2, U AT P94k, DNA [R5 3 44y, TAEFSI (HP-A, B, C) . #5751 R #1 H 45751
T(E 2A). Hrp 5 541 R & — D WEESS 1, 07 — 4% 3 dmbricd A BHQ J4# K 141 1% Blocker J3 41 F1—
4 S uiARICA FAM 286 1055 77 91, — R0 R 1m0 s ol R A 18] 2A B, #5741 R FER bRk
A TP Blocker K5 24438 1) = 2 TAE 731 (HP-A, B, C) 5 H bRk T 22585, = S48 1 M RE 30T 1
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SEURFUE 2RI, HP-A 5 B Z 840 B X 8 dd’, B 5 C Z [ il e X I, ee’; = S4R4ETE
dd’ Al ee’ BT 5 F HAGIE — A Fa 25 F4 8 (atb+c) , Fe ZAE R BYS7 8 S X3 a’ i 5 F 58 s i 7%
S, Blocker ¢ 81 75 5 i 7% B9 1o B2 9 B, R 28615 5K .

(A)
a b c a b ¢
4 e’I ¢ Associative qu\cl{efr
d domian R o
a b ¢
HP- B |€ HP-A| B
T HP-A+B+C+T Complex
(B) -
2500001 @ Tpp
) Tasc
~ 200000} . ST
?0 & Taipec
7 150000F B no Target
= .
R -

£, 100000}

F

500001

Nl alls
NN \\ Pl lem A

R,yHP-A+B+C, R (/HP-A+B+C, R,/HP-A+B+C; R /HP-A,+B+C,

2 B4R DNA [ttt (A) & DNA [F] g% £R45 B0k (B)
TE: RN S BREHE 50 nmol L', HAREVREE 20 nmol L™, $R&HEHR B 40 nmol-L™", KM ETIH] 1 h (n=3)
Fig.2 (A) Principle of the triplex-based DNA circuit. (B) Optimization of DNA circuit probe

Note: DNA circuit probe 50 nmol-L ™, target sequence 20 nmol-L ™, report sequence 40 nmol-L ™, reaction time 1 h (n=3)

T Bi 1k DNA [ EEAT AR S S5 IS OU T, B &5 30t B0t 20 52 1 1 1 1 L AR, ¥ HP-A
HERY a KA LL A Je i I B REOR, SRIEE B SR AL BEEAS A FEFEFHEM A4 2E, i
R JE Hb s /> DNA (1] 5% 5 it . 55— 77 1, % Blocker |, A B 4 2 ] 45 & 18 dd’ il XUEE K B2, B.
CHEZS G Il ee” MK JE AT T 04k, X 28 B AU I B DNA 1] [# 1% 8% fA ot e A5 52, 23 R 3
DNA [5] 75 Ji5 181 0 FH IR A9 26 2 A0 R AERE . 1] 2B o X R TRl BE 45 #4358 dd” | ee’ . Blocker FY4L A 47
T R Y Blocker K K 15 Mg LN (R15), R15/HP-A5+B+C6 (K4 G A H 30+ 43 7™ F (9 FE 4 ek
55, 1 H R @ ¥R 8 LT3 sk, SE 22 B T TB+C>TA+B+C UK L, X BEIRE 15 nt
(1) Blocker 1 & 1 4, A & DAAR AL 2 92119 [ 1 BB 42 22 FR %I DNA 111 5% (19 36 58 54 )3 30 24 Blocker K &
P15 nt HEHNE)] 18 nt (R18/HP-AS+B+C6) B, 1] LI £ TA+B+C {55 B 3 H5 58 H X} TB+C Mk #H1E K
WRHRE T, X PR A SR K 19 Blocker — 7 T AT AZE A 24 1 BRI TB+C MY ARFES M I 0L, 75— J5 Al
P T SR SRR, IR T RIS WY SRR, AR E T RN B )2 dREXT dd | ee’ AT AL, 2 dd
KHLA E M 5 nt(HP-AS) Jdi/NE] dnt(HP-A4) B, i 35 082D H k£ KR/, Bk, 45 A3 dd #k
FRTITE 4 nt, 1M ee’ K BEORFFTE 5 nt, 245 255 fF DNA B2 4 8 R18/HP-A4+B+C5.

FEAY = AR DNA Wl B%J5 , i — 20 5 58 1 22 v 5 55 v DNA [l % % A [A] 3k B2 (500 pmol L',
1 nmol-L™", 5mol-L™", 10 nmol-L™", 20 nmol-L™") #U4z5 J7 51) 14 S B 2 S m b 1 00 (B 3 A), DATFASG HM:RE
T 2 EVs B, WIERIK 2 &4 50 nmol- L™ T4 /741 (HP-A, B, C) A1 40 nmol-L ™' i #5351 R, Wi
DB ] R 120 min, A HARF A T B, 2680 01 #5080 R R et JLF- A0 0L H AR R e, BRI i
DNA [i] AR R BT ARTS S5 SRl O T A 5% A e BN, sf () 22 (B 4R 31— A A, 3 8 T SO B
[ 4 Th, JFLARL R 81 T #e BE MR AR R x, VTR 2SR E F-FO BUE AL AR y L hilAnifE i 2 (K 3 B), br
HEM 2 A2 h Y=10787X+10869, R>=0.997, T 1E 20 nmol-L ™' FY#EJF 51 T AE7E SN T S £ vl LU= 4 &
ik 14.5 B{E M L (S/N) , AR 45 3o/slope 1153 H KT TN FR 4 418 pmol-L™', 1% DNA [l B B A2t C &,
i r e H R G 22 EVs PURE SRR ICER L T RAF Bl 174k,
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Fig.3 (A) Kinetic profile of the DNA circuit working in the presence of varying concentrations of target; (B) The

equilibrium signal at ¢ = 1 h plotted with the corresponding target concentrations tested (#=3)

2.2 DNA [l &4 514 SP-ICP-MS 155 it KK i

SP-ICP-MS PR H: R S8 v s B b . It HH0ae Jr ok, & s 9K ok A i S 224 R . H
JRBRAE T+ B4 R GUOR IR E A S5 B8 TR 257 8 — AN ST A5 ko, A55- 5 5 ok
SIBICE M E R AUE L. BT A GOK SR AL SRR AE (R 5 08 B FAF7E i 35 25 5%, SP-ICP-MS REf
TE R BEA R R X 43 B0k 5 R AR AR, JF S RAE S 58 T b, O R A 0 B8 S5 A 08
DR, 6T HOBAWOR 2> BRBE 77, %31 T —Ah LA DNA BT R BB TT . LA RCA N A 1S S KA L
() EVs il 56 . AEIZ AR R T, RCA 2N AR — N FREBR BT 19 Bl - i HIL . 1L IR, RCA £
B A 31wt 38 3 — Bt B #h Blocker 35 4% B2 1 141, He 3t & A — A 3'-3'1 4% 19 8] B i R W% 5E (inverted
dT), n] Bjj 1k Phi29 A UMM, AT AT R0 i 3B RE ST 5o 3. X EVs R RSB B At S
DNA ZHR 456 5, 51907 914 25 0] % 67 2 BEAR BT, 38 4 25 ) SR AE R0 S 3% Blocker 4 5 4 1 B
R, 1M )5 3 Phi29 /-5 RCA i (] 4). RCA 34 /=¥ & fi 24~ E X DNA R B, Rets S51&MM A &
MRS ) DNA-AuNPs = 804438, 78 EVs 1075 58 15 B mT 51 04 4 40 oK ks SR 4 14 SR AL 1k i 2%
T T 55538 B, € SP-ICP-MS V-5 b R 3y = i BE 1 B ok o 197, DA S 0% H A% EVs 19 3 R
5w

B
Blocker ya

< /A\\\\
y S~ \\
7o O
= o I /) \ —
4 - D~ \ 7\
| | A b 4 \,/ )
/ / [\ VR
@ + ~» » \ Phi29+dNTPs  “—< 2
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Fig.4 EVs surface protein co-localization activates RCA reaction

BiJ5 £ T 5 RCA ¥4 7= #) H %M1 DNA-AuNPs #1245, FH T RCA §" 3 = 0 kric. MIE SA )
BB E AT LUE H, B T DNA B AuNPs H 55067 22 (] 77 76 L far e 7 DR G AR 3 T R4 9 PR
ARAS; AuNPs #7285 0] LLAT RCA 438 7= W) AH 52438 W B T A 3 A 40T 1> AuNPs 119 44 K JB0kE 5% 4 14
(RCA-AuNPs) . AuNPs H14} K ik 58 45 (K th /£ SP-ICP-MS 1 (1) Bk IS5 5 il 5 5 4n 18 5B itz i i 1)
AuNPs HURL 9 R 5F Sy 15 nm, 7] LLF H 15 nm AuNPs 76 SP-ICP-MS 1 19 bk i {5 5 45 55, - 24758 Ji 7
10 counts LA R 5 i AH Hb 2 T 4 K A 58 4 1A D) BT B ol 348 5 %) ik v e 1) SC %o 3K T AL BN AT
Wil I 15 20 08 X 7 145 S 5 3 0 A1 . 32 B SP-ICP-MS 1] AR -4 [X 73 B3 i AuNPs FIZ4 K Fik:
REM.
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Fig.5 TEM images (A), SP-ICP-MS signal profiles (B) and histogram distributions (C) of monodisperse
AuNPs and RCA-AuNPs aggregates

2.3 HF4HMEE IR EVs i SP-ICP-MS 4341

ST B iE SP-ICP-MS XJ T4 i R U5 EVs (kI 68 7, 8 T 6 40 i HepG2 LA X 1E & T4 it
HL-7702 1 Ay 20 AR 10, 555 fic (AR R A b 8 45 3] DNA 8] 8% rpr ) SFAS [R] 40 A Y EVs 61 3 FhaE
(EpCAM. GPC3. CD63) #17hric. EpCAM sz — il 1Y) 22 [l g (12 e R FL 5 A 2 0, 16 R 2 B0 e vh
#A = AR IR . GPC3 # [ J& — i IR AH OC 35 (1 28, 76 0 4 i b Gk (H 7R (BB P 8L R 3Rk
CD63 J&— ' EVs RS PERR AR 11, 7E EVs L =31k, 7E#E T SP-ICP-MS 43 AT Z 1if, 1 S o i =4 f AR
X} EVs #E7RAE (F 6A), ASGUF IR 3 Fi i (A 25816 0. i F EVs R HA 90k, R mipess
MIAR & 4> F oA R, B 2B 7 1% 50 i =X 4 M A0 2 BEA B, Jr LA S KE EVs [#] 2 7E 4 um
7L RS Pk L, PR AT A R A . 5 S UE B, A B 1R X IR, 3 PP R (1 7E HepG2 41 i EVs Hh#f
A = B R IA AT B S B R AR SR, EVs 7E BAT B MR i SUZ L5 R, RS 2341 KZU7E 70 nm
% 150 nm Z 8] (K] 6B).
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I z 1000 § §
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f NI
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-10%0 102 10° 10+ 10°-10%0 102 10° 10* 10°
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B 6 (A)HepG2 4HAfIFN HL-7702 484 EVs R 140 4T; (B) MUZBEE5H EVs 1935 5T HUEBE R AR
Fig.6 (A) Profiling of surface proteins on EVs from the HepG2 cell and HL-7702 cell ; (B) TEM images of EVs with the
bilayer structure
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Z e, FIHE BCAE 6 1) DNA (81 A 138 h 3B EVs SEF TR0 5 9 oK 4 41 3%, 1454 SP-
ICP-MS 43 4. &l 7A i, %5 [ 41 (Blank) FBEHLIF 51 DNA [8] # 2H (Random ) ¥ A4S I 2] i 345
1 38 BC AR A& 1 i DNA 18] 8678 N A HepG2 EVs Ji, B3 i ] P SR 4 2 ) SP-ICP-MS ik i {5 580 %
B 0. teAh, 5 HL-7702 EVs X IR SE 8625 TR0, %M 5 5 2 EVs WA ELAG AT SE p ik BR k.
T BIE SP-ICP-MS £ & 2% Il 15 #E A Xt EVs S0 9 RE 1, 4 BIPTAR T 3% FRBE h EV's 14 M 17 444
WIS, B4, SR IR A 103 (FBS) SEUL LI PR, I 10) AN [R) A6 B A5 45009 103 im A DNA [l i TAF 7
%1 B2 1x10° particles-uL ™' HepG2 EVs, BfiJ5iC 5% SP-ICP-MS (1) ik {5 5284k, tnl&l 7B i, %07 e
[) i ¥ v B T 6 H AR EVs 752 B0 H AR i 1 B8 O, B IVE MAFFE AN & B TR &5 R 3T
>k, UL 4% IM3EVE WIS IR 2, A R4 B (5107 particles-uL ™" & 5x10° particles-pL™") i) HepG2 EVs @Sl
Z M, AN AR M E S PBS (R R by [ e 2z 5.t &1 7C vl AL, ST 4% I8 4510 T R %
W A RALG, L3 2 R T E o B 2 B, TTSCR 4T3 ml 35 21 PBS 1R R 119 86% LA 1. JEF B0 B[] (40 s) Y
SP-ICP-MS fik #h {55 45 EVs Mk Z Lk C &, @ 7 mIH 52 Y = 80.13X-209.3(R* = 0.993).
%07 R EAR Y 4% I35 41 F EVs #IBR 294 950 particle-uL ™' (30/slope) .

300 (A 300~ (B — (C
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g 2 g A S
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S 100} S 100 g B MIE
i = i ’_.c’f’
of "
0 LI 0 ] 1 1 1 1 1 I
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B 7 SP-ICP-MS kil J5 i iy 45 5 1 | i 52 1k 55 RABEEE A
(A) HepG2 5 HL-7702 €8 EVs ) SP-ICP-MS Jiki{5 5%t 1. (B)HepG2 K5 EVs ZEA ] i35 e B (0—20% ) Ay SP-ICP-MS Jiik
HSXFEE. (C) HepG2 KR EVs 7 PBS 5 10% L 5 5 SR Sk A MG Rl 2k
Fig.7 Evaluation of the specificity, tolerance and sensitivity of the SP-ICP-MS detection method
(A) Comparison of SP-ICP-MS pulse signals of EVs from HepG2 and HL-7702 sources. (B) Comparison of SP-ICP-MS pulse signals of
HepG2-derived EVs in different serum concentrations (0—20%). (C) The linear relationship curve of signal frequency and concentration of
HepG2-derived EVs in PBS and 10% serum background

2.4 FTF SP-ICP-MS ) HCC R Wi 52

AFP & BT HCC 12 Wi i 2 094n &4, SR 100, ZEIm R 52 b 29 20%—30% (1) HCC 4 AFP /K
NS W T, X AR A B AR 2 W R A S S S U AR R 1 R A TR VE . AR S
PLIl s o EpCAM/GPC3/CD63 = BH Y EVs R 5 I 46 b, PR 2 HAE HCC 2 Wb i i . A
R 10 Z 8 . 30 44 HCC B M1 10 44 LC BFH ik it (36 2), ilad 77 2253 1 (ANOVA test)
X AN [R) B INLTE FE AR (9 EVs W BE R AT 25 5 LU A, IF R A2 308 TAE 2 (ROC) 14 EVs I #F ik i
KM E AFP ¥ B %) HCC 12 W il S50 e e S k. 45 3R 7R (181 8A), it A (HD) . iFRE AL H 3% (LC)
5 HCC & Z a1 EVs W HF Wk B2 A7 78 I 25 M 25 5 (P<0.01) . ROC 23R W1, TLit J& 1L %5 AFP if &
EVs WHHVE N IZ W6 45, ¥ RERCAF 1l X 43 HCC B3 SRR, H il 4N 1 (AUC) 43331 24 0.86 F1
0.92(1d 8B). k1M, 7€ X4 HCC & 5 LC & 3& J7 i, EpCAM/GPC3/CD63 = BH /) EVs W 2 81 &
i, H: ROC #h£E 1Y AUC AJ35 0.90(95% CI: 0.83—0.96), AL F, IfLiE AFP 1V Mi2 Wi brit i AUC
LA 0.72(95% CI: 0.65—0.79). #—3+5 /R, HCC #3519 EpCAM/GPC3/CD63 — [H4: EVs 3%
Wl 3.82 x10° particles pL ", {H /M A ] 22 S50 K, A2 AR YE I AT 36 10 A% DA L, i A4k 35 EVs -3
WFEH 6.52 x10° particles-pL ™. J&F ROC £ 26 F5 5500 1 S F 12 Wil FHE R 3.69 x10° particles-uL ™,
G X 87 32 R FURG JE hy 82.4%, RS 91.3%. i Su 4t S B, 3@ i Wi il EpCAM/GPC3/CD63 = FH
£ EVs 7E 528 HCC 1Y 0112 W 1 A A K B9 7. (B iR TREAS S A FR, 2285 AT 75 A2 T8 R AL i
I AR BA B v i — 25 B
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R2 WA R R

Table 2 The information of clinical patients

WESEAR A SP-ICP-MSJK MR (n=3)

RS BB EVsiffE/(x10° particle-pL™")  AFPHE/ (ng'mL™")
Sample no Stage Edmogdson Frequency of Conc. of EVs *Conc. of AFP
grading SP-ICP-MS pulse

1 HD — 37+6 0.36 8.1

2 HD — 24+4 0.04 6.2

3 HD — 36+4 0.33 6.3

4 HD — 4345 0.50 7.5

5 HD — 5246 0.72 5.3

6 HD — 24+3 0.04 2.3

7 HD — 52+6 0.72 44

8 HD — 35+4 0.31 <0.6

9 HD — 4545 0.55 12
10 HD — 366 0.33 5.8

11 HCC I 2743 0.12 113.2
12 HCC I 63+4 0.99 443.7
13 HCC I 4345 0.50 433
14 HCC I 47+9 0.60 186.8
15 HCC il 43+3 0.50 73.4
16 HCC I 84+8 1.49 69.2
17 HCC I 938 1.71 1664
18 HCC I 82+7 1.44 113.2
19 HCC I 2443 0.04 90.5
20 HCC II 195+12 4.17 674.3
21 HCC [l 30527 6.82 7204.0
22 HCC Ui 206+22 4.44 435.4
23 HCC Ui 434+39 9.93 12178.0
24 HCC [l 98+11 1.83 712.0
25 HCC I 116£17 2.26 93.5
26 HCC i 175+14 3.69 234.2
27 HCC [l 414+32 9.45 32474.0
28 HCC I 257+33 5.66 75.7
29 HCC i 118+18 231 374.0
30 HCC [l 20122 431 2263.0
31 HCC I 144+13 2.94 98.4
32 HCC i 186+15 3.95 363.0
33 HCC v 292437 6.51 4650.0
34 HCC v 135421 2.72 1273.0
35 HCC \Y 114221 222 364.11
36 HCC v 157+19 3.25 257.0
37 HCC \Y 363442 8.22 40739.0
38 HCC \Y 243425 5.33 1798.0
39 HCC v 244427 5.35 431.4
40 HCC v 512469 11.81 209666.0
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k2
PESLS N2 BRIESARNIL SPACPMSBRIIIR(1=3) o e 100 particlenL ") AFPYJ#/ (ng'mL ")
Sample no Stage Edmon.dson Frequency of Conc. of EVs *Conc. of AFP
grading SP-ICP-MS pulse
41 LC — 3245 0.24 6.3
42 LC — 4246 0.48 190.3
43 LC — 32+6 0.24 2342
44 LC — 60+7 0.91 15.8
45 LC — 47+4 0.60 99.4
46 LC — 3644 0.36 45
47 LC — 737 0.33 308.5
48 LC — 52+7 1.23 243
49 LC — 62+9 0.72 86.1
50 LC — 56+8 0.96 127.1
ML AFP SRR ph 1R~ i T L B B sR S T A S
*The data on serum AFP content were collected and collated by Zhongshan Hospital Affiliated to Xiamen University.
ax HD VS HCC LC VS HCC
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Fig.8 (A) Pulse counts of EVs in serum from different subjects measured by SP-ICP-MS ( collection time: 40 s); (B) ROC
curves for distinguishing HCC from HD (red: EV concentration; black: serum AFP); (C) ROC curves for distinguishing HCC
from LC (red: EV concentration; black: serum AFP)

3 4518 (Conclusion)

FEATESE T, XL S HCC 12 Wi ik i Bt — AR 22 1 T s > i) 22 05 RN AN IR Y IR, R R T —
Fh LT DNA 2 58 [0l B A & 90K 4 23 3R W, 45 G SP-ICP-MS AR, S8 T % i K U8 EVs i £ 45
AP TR TR 5 S R Ay AT RS 2 i A DA S e e (1) aE i F T R B R EpCAML,
GPC3 il CD63 = Fl EVs F1fi £ [/ DNA 255 [ #, ST 7 X5 s >k U EVs R 14l A 1501, A%
L T2 W HERn %, (2) I EVs i A fil & (IR IR 1 (RCA) I X DNA fi 55 AT 400K 4
ZHAETIOR, B TR R AU 5 (3) 454 SP-ICP-MS i A&, AMUTTIR 7 AE58 )7 vk vh REUE R BEA LR
TH B 1) S, 30 SEH T TC A 4 B 0 LI T BVs B B4R 0T, 5 T% SP-ICP-MS M1 E &, R4:1T
i TIEH AN HCC B35 DL 10 BB IS AR AR T B EVs SRIRFHIE, UM EE T H T HCC 2
PSR R B R AN SR, 1% 5K M R I EpCAM/GPC3/CD63 = F% EVs 7E X 43 HCC ‘5 HT A% 4k i % )7
T R B P FAEGE L3 AFP (R Avel S vk, 3 32 7 T HCC R 3011 PR A2 W % ] 5 1 A s i
AHBFFEAAL R HCC (ARG e LI B4 T 8T R B A%, o BVs 78 8 40112 W fn S (4 A0 48 B b 11 1z
FHAH & T 5T [ A i 5%
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